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Abstract. In this paper, we derive an explicit formula for the determinant of Allen’s matrix of quasi-sum
production functions. We completely classify the quasi-sum production functions by using their Allen
determinants. Further, we give some geometric applications of Allen determinants.

1. Introduction

In economics, a production function is a mathematical expression which denotes the physical relations
between the output generated of a firm, an industry or an economy and inputs that have been used.
Explicitly, a production function is a map which has non-vanishing first derivatives defined by

f : Rn
+ −→ R+, f = f (x1, x2, ..., xn) , (1.1)

where f is the quantity of output, n is the number of inputs and x1, x2, ..., xn are the inputs. For more detailed
properties of production functions, see [4, 13, 17, 19, 20] .

A production function f is called quasi-sum if there are continuous strict monotone functions hi : R+ −→

R, i = 1, ...,n, and there exist an interval I ⊂ R of positive length and a continuous strict monotone function
F : I −→ R such that for each x = (x1, ..., xn)∈Rn

+ we have h1 (x1) + ... + h (xn) ∈ I and

f (x) = F (h1 (x1) + ... + h (xn)) . (1.2)

The justification for studying production functions of quasi-sum form is that these functions appear as
solutions of the general bisymmetry equation and they are related to the problem of consistent aggregation
[1, 7]. A quasi-sum production function is called quasi-linear if at most one of F, h1, ..., hn from (1.2) is a
nonlinear function.

The most common quantitative indices of production factor substitutability are forms of the elasticity of
substitution. R.G.D. Allen and J.R. Hicks [2] suggested two generalizations of Hicks’ original two variable
elasticity concept.

The first concept, called Hicks elasticity of substitution, is defined as follows.
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Let f (x1, ..., xn) be a production function. Then Hicks elasticity of substitution of the i−th production
variable with respect to the j−th production variable is given by

Hi j (x) = −

1
xi fi

+ 1
x j f j

fii

( fi)2 −
2 fi j

fi f j
+

f j j

( f j)2

(
x ∈Rn

+, i, j = 1, ...,n, i , j
)
, (1.3)

where fi = ∂ f/∂xi, fi j = ∂2 f/∂xi∂x j.
L. Losonczi [14] classified homogeneous production functions of 2 variables, having constant Hicks

elasticiy of substitution. Then, the classification of L. Losonczi was extended to n variables by B-Y. Chen
[6].

The second concept, investigated by R.G.D. Allen [2] and H. Uzawa [18] , is the following:
Let f be a production function. Then Allen elasticity of substitution of the i−th production variable with

respect to the j−th production variable is defined by

Ai j (x) = −
x1 f1 + x2 f2 + ... + xn fn

xix j

Di j

D
(
x = (x1, ..., xn)∈Rn

+, i, j = 1, ...,n, i , j
)
, (1.4)

where D is the determinant of the matrix

M
(

f
)

=


0 f1 ... fn−1 fn
f1 f11 ... f1n−1 f1n
...

... ...
...

...
fn−1 f1n−1 ... fn−1n−1 fn−1n
fn f1n ... fn−1n fnn


(1.5)

and Di j is the co-factor of the element fi j in the determinant D (D , 0 is assumed). M
(

f
)

is called the Allen’s
matrix and we call det

(
M

(
f
))

the Allen determinant.
It is a simple calculation to show that in case of two variables Hicks elasticity of substitution coincides

with Allen elasticity of substitution.
In this paper, we focus on the singularity of the Allen’s matrix of quasi-sum production functions, by

analogy to the Hessian Determinant Formula given by B.-Y. Chen in [10] for the composite functions of the
form:

f (x) = F (h1 (x1) + h2 (x2) + ... + hn (xn)) . (1.6)

We give an explicit formula for Allen determinant of quasi-sum production functions. We classify the
quasi-sum production functions by their Allen determinants. Further we give some geometric applications
of Allen determinants.

2. Quasi-Sum Production Functions with Allen Determinants

Allen Determinant Formula. Let f = F (h1 (x1) + h2 (x2) + ... + hn (xn)) be a quasi-sum production function
of n variables. Then the determinant of the Allen’s matrix M

(
f
)

is given by

det
(
M

(
f
))

= − (F′)n+1
n∑

j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

n , (2.1)

where h′j =
dh j

dx j
, h′′j =

d2h j

dx2
j
, for j = 1, ...,n, and F′ = F′ (u), for u = h1 (x1) + h2 (x2) + ... + hn (xn) .

Proof. Let f = F (h1 (x1) + h2 (x2) + ... + hn (xn)) be a twice differentiable quasi-sum production function.
First we show that the equality (2.1) is satisfied for n = 2. For this, the Allen’s matrix for the two variables
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quasi-sum production function f = F (h1 (x1) + h2 (x2)) is given by

M
(

f
)

=

 0 f1 f2
f1 f11 f12
f2 f21 f22

 , (2.2)

where fi =
∂ f
∂xi
, fi j =

∂2 f
∂xi∂x j

. Then, in our case,

fi = h′i F
′, fi j = h′i h

′

jF
′′, for i , j, and fii =

(
h′i

)2
F′′ + h′′i F′. (2.3)

So, we write the Allen’s matrix for the two variables quasi-sum production function
f = F (h1 (x1) + h2 (x2)) as follows:

M
(

f
)

=


0 h′1F′ h′2F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ h′1h′2F′′

h′2F′ h′1h′2F′′
(
h′2

)2
F′′ + h′′2 F′

 .
The determinat of M

(
f
)

is

det
(
M

(
f
))

= − (F′)3
[(

h′1
)2 (

h′′2
)

+
(
h′′1

) (
h′2

)2
]
. (2.4)

Therefore, we have formula (2.1) for n = 2.
Now, we prove the formula (2.1) by mathematical induction. Let us assume that (2.1) holds for n = k,

with n ≥ 2. We shall show that (2.1) is satisfied for n = k + 1. For n = k + 1, we have

M
(

f
)

=


0 f1 ... fk fk+1
f1 f11 ... f1k f1k+1
...

... ...
...

...
fk f1k ... fkk fkk+1

fk+1 f1k+1 ... fkk+1 fk+1k+1


, (2.5)

and then the determinant of M
(

f
)

is given by

det
(
M

(
f
))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′kF′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′kF′′ h′1h′k+1F′′

...
... ...

...
...

h′kF′ h′1h′kF′′ ...
(
h′k

)2
F′′ + h′′k F′ h′kh′k+1F′′

h′k+1F′ h′1h′k+1F′′ ... h′kh′k+1F′′
(
h′k+1

)2
F′′ + h′′k+1F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

Now, we apply some elementary transformations for the determinant.
We replace the (k + 2)−th row by (k + 2)−th row minus h′k+1/h

′

k times the (k + 1)−th row; then we obtain

det
(
M

(
f
))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′kF′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′kF′′ h′1h′k+1F′′

...
... ...

...
...

h′kF′ h′1h′kF′′ ...
(
h′k

)2
F′′ + h′′k F′ h′kh′k+1F′′

0 0 ... −
h′k+1h′′k

h′k
F′ h′′k+1F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
h′k+1h′′k

h′k
F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′k−1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′k−1F′′ h′1h′k+1F′′

...
... ...

...
...

h′k−1F′ h′1h′k−1F′′ ...
(
h′k−1

)2
F′′ + h′′k−1F′ h′k−1h′k+1F′′

h′kF′ h′1h′kF′′ ... h′k−1h′kF′′ h′kh′k+1F′′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+h′′k+1F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′kF′ h′kF′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′kF′′ h′1h′kF′′

...
... ...

...
...

h′k−1F′ h′1h′k−1F′′ ...
(
h′k−1

)2
F′′ + h′′k−1F′ h′k−1h′kF′′

h′kF′ h′1h′kF′′ ... h′k−1h′kF′′
(
h′k

)2
F′′ + h′′k F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸                                                                                   ︷︷                                                                                   ︸
−(F′)k ∑k

j=1 h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

k

= h′′k+1

− (F′)k+1
k∑

j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

k

 (2.7)

+
h′k+1h′′k

h′k
F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′k−1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′k−1F′′ h′1h′k+1F′′

...
... ...

...
...

h′k−1F′ h′1h′k−1F′′ ...
(
h′k−1

)2
F′′ + h′′k−1F′ h′k−1h′k+1F′′

h′kF′ h′1h′kF′′ ... h′k−1h′kF′′ h′kh′k+1F′′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The determinant from the formula (2.7) can be calculated by replacing the (k + 1)−th row by the (k + 1)−th
row minus h′k/h

′

k−1 times k−th row,

|B| not
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′k−1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′k−1F′′ h′1h′k+1F′′

...
... ...

...
...

h′k−1F′ h′1h′k−1F′′ ...
(
h′k−1

)2
F′′ + h′′k−1F′ h′k−1h′k+1F′′

h′kF′ h′1h′kF′′ ... h′k−1h′kF′′ h′kh′k+1F′′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
h′k+1h′′k

h′k
F′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′k−1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′k−1F′′ h′1h′k+1F′′

...
... ...

...
...

h′k−1F′ h′1h′k−1F′′ ...
(
h′k−1

)2
F′′ + h′′k−1F′ h′k−1h′k+1F′′

0 0 ... −
h′kh′′k−1F′

h′k−1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
h′k+1h′′k

h′k

h′kh′′k−1

h′k−1

(F′)2

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h′1F′ ... h′k−1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ ... h′1h′k−1F′′ h′1h′k+1F′′

...
... ...

...
...

h′k−2F′ h′1h′k−2F′′ ...
(
h′k−2

)2
F′′ + h′′k−2F′ h′k−2h′k+1F′′

h′k−1F′ h′1h′k−1F′′ ... h′k−2h′k−1F′′ h′k−1h′k+1F′′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By similar calculations, we finally obtain:

|B| =
h′k+1h′′k

h′k

h′kh′′k−1

h′k−1

h′k−1h′′k−2

h′k−2

...
h′4h′′3

h′3

h′3h′′2
h′2

(F′)k−2
·

∣∣∣∣∣∣∣∣∣∣
0 h′1F′ h′k+1F′

h′1F′
(
h′1

)2
F′′ + h′′1 F′ h′1h′k+1F′′

0 −
h′2h′′1

h′1
F′ 0

∣∣∣∣∣∣∣∣∣∣ (2.8)

=
h′k+1h′′k

h′k

h′kh′′k−1

h′k−1

h′k−1h′′k−2

h′k−2

...
h′4h′′3

h′3

h′3h′′2
h′2

(F′)k−2 h′2h′′1
h′1

F′
(
−h′1h′k+1 (F′)2

)
= −h′′1 h′′2 ...h

′′

k

(
h′k+1

)2
(F′)k+1 .

From (2.7) and (2.8) , we get:

det
(
M

(
f
))

= −h′′k+1

(F′)k+1
k∑

j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

k

 − h′′1 h′′2 ...h
′′

k

(
h′k+1

)2
(F′)k+1

= − (F′)k+1
k+1∑
j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

n ,

which completes the proof.

F being strict monotone, F′ , 0; then, by the Allen Determinant Formula, it follows immediately

Corollary 2.1. The singularity of Allen’s matrix for quasi-sum production function f = F(h1 (x1) + h2 (x2) +
... + hn (xn)) depends only on the functions h1, ..., hn.

Next result completely classifies quasi-sum production functions whose Allen’s matrices are singular.

Theorem 2.2. Let f be a twice differentiable quasi-sum production function, f (x) = F(h1 (x1) + h2 (x2) + ... +
hn (xn)). Then the Allen’s matrix M

(
f
)

is singular if and only if f is one of the following forms:
(1) f = F (c1x1 + c2x2 + h3 (x3) + ... + hn (xn)) , where c1, c2 are nonzero constants and F, h3, ..., hn are strict

monotone functions;
(2) f = F

(∑n
i=1 ci ln |xi + di| + ei

)
, where ci are nonzero constans and di, ei are some constants.

Proof. Let us consider the twice differentiable quasi-sum production function given by

f = F (h1 (x1) + h2 (x2) + ... + hn (xn)) . (2.9)

Hence F, h1, ..., hn are continuous strict monotone functions. Applying the Allen Determinant Formula for
(2.9) , we get

det
(
M

(
f
))

= − (F′)n+1
n∑

j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

n . (2.10)
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If the Allen’s matrix M
(

f
)

is singular, then by (2.10) it follows that:

n∑
j=1

h′′1 ...h
′′

j−1

(
h′j

)2
h′′j+1...h

′′

n = 0. (2.11)

Case 1. One of the h′′1 , ..., h
′′
n vanishes. We may assume that h′′1 = 0. Hence we get from (2.11)

h′′2 ...h
′′

n = 0, (2.12)

because h′1 , 0, h1 being strict monotone. From (2.12) , we may assume h′′2 = 0 and thus we have for k = 1, 2

hk (xk) = ckxk + dk,

where ck are nonzero constants and dk are some constants. Therefore the production function takes the
form:

f = F (c1x1 + c2x2 + h3 (x3) + ... + hn (xn)) ,

where c1, c2 are nonzero constants and h3, ..., hn are strict monotone functions. This gives first part of the
theorem.

Case 2. h′′1 , ..., h
′′
n are nonzero. Then from (2.11) , by dividing with the product h′′1 , ..., h

′′
n , we write(

h′1
)2

(x1)

h′′1 (x1)
+ ... +

(
h′n

)2 (xn)
h′′n (xn)

= 0. (2. 13)

Taking partial derivative of (2.13) with respect to xi, we derive

h′i h
′′′

i(
h′′i

)2 = 2, i = 1, ...,n. (2.14)

By solving (2.14) we find hi (xi) = ci ln |xi + di|+ei,where ci are nonzero constans and di, ei are some constants.
If f has the form (1) or (2), it is easily seen that M( f ) is singular. This completes the proof.

3. An Application of Allen Determinants for Composite Functions

Theorem 3.1. Let F (u) be a twice differentiable function with F′ (u) , 0 and let

f = F

 n∑
i=1

bixci
i


be the composite of F and r (x) =

∑n
i=1 bixci

i , where bi (i = 1, ...,n) are nonzero constants. Then the Allen’s matrix
M

(
f
)

of f is singular if and only if one of the following conditions occurs:
(i) At least one of the c1, ..., cn vanishes;
(ii) At least two of c1, ..., cn are equal to one.

Proof. Under the hypothesis of theorem, we can write

hi (xi) = bixci
i , i = 1, ...,n. (3.1)

Thus the composite function f = F
(∑n

i=1 bixci
i

)
takes the form:

f = F (h1 (x1) + ... + hn (xn)) .
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From (3.1) , we have
h′i = bicixci−1

i and h′′i = bici (ci − 1) xci−2
i , i = 1, ...,n.

If we apply the Allen Determinant Formula for the composite function f = F ◦ r, then we get

det
(
M

(
f
))

= − (F′)n+1

·

n∑
j=1

{[
b1c1 (c1 − 1) xc1−2

1

]
...

[
b jc j

(
c j − 1

)
xc j−2

j

] [
b jc jx

c j−1
j

]2

·

[
b j+1c j+1

(
c j+1 − 1

)
xc j+1−2

j+1

]
...

[
bncn (cn − 1) xcn−2

n

]}
= − (F′)n+1

 n∏
k=1

bkckxck−2
k


 n∑

j=1

b j (c1 − 1) ...
(
c j−1 − 1

)
c j (c1+1 − 1) ... (cn − 1) xc j

j

 .
From the last equality, if M

(
f
)

is a singular matrix then either at least one of the c1, ..., cn is equal to zero or
at least two of the c1, ..., cn are equal to one.

The converse is easily verified.

4. Geometric Interpretations of Allen Determinants

Let Mn be a hypersurface of a Euclidean space En+1. For general references on the geometry of hyper-
surfaces see [3, 4] .

The Gauss map ν : Mn
−→ Sn+1 maps Mn to the unit hypersphere Sn of En+1. The differential dν of the

Gauss map ν is known as the shape operator or Weingarten map. Denote by TpMn the tangent space of Mn

at the point p ∈Mn. Then, for v,w ∈ TpMn, the shape operator Ap at the point p ∈Mn is defined by

1
(
Ap (v) ,w

)
= 1 (dν (v) ,w) ,

where 1 is the induced metric tensor on Mn from the Euclidean metric on En+1.
The determinant of the shape operator Ap is called the Gauss-Kronocker curvature.
Let

(
N, 1

)
be a Riemannian manifold. For more detailed properties of geometric structures on Rieman-

nian manifolds, see [12] . A Riemannian connection, also called Levi-Civita connection, on the Riemannian
manifold

(
N, 1

)
is an affine connection which is compatible with metric, i.e, ∇1 = 0 and symmetric, i.e,

∇XY − ∇YX = [X,Y], for any vector fields X and Y on N, where [, ] is the Lie bracket.
The Riemannian curvature tensor R is given in terms of ∇ by

R (X,Y) Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.

A Riemannian manifold is called a flat space if its Riemannian curvature tensor vanishes identically.
Let σ be a two dimensional subspace of the tangent space TpN and let u, v ∈ σ be two linearly independent

vectors such that σ = Sp (u, v). Then the sectional curvature of σ at the point p ∈ N is a real number defined
by

K (u, v) = K (σ) =
1 (R (u, v) v,u)

1 (u,u) 1 (v, v) − 1 (u, v)2 .

The Ricci tensor of a Riemannian manifold N at a point p ∈ N is defined to be the trace of the linear map
TpN −→ TpN given by

w 7−→ R (w,u) v.

A Riemannian manifold is called Ricci-flat if its Ricci tensor vanishes identically.
The following result is well-known from [4, 7] .
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Proposition 4.1. For the production hypersurface of En+1 defined by

L (x) =
(
x1, ..., xn, f (x1, ..., xn)

)
,

we have:
(i) The Gauss-Kronecker curvature G is

G =
det

(
fi j

)
wn+2 ,

with w =
√

1 +
∑n

i=1 f 2
i .

(ii) The sectional curvature Ki j of the plane section spanned by ∂
∂xi
, ∂
∂x j

is given by

Ki j =
fii f j j − f 2

i j

w2
(
1 + f 2

i + f 2
j

) .
(iii) The Riemannian curvature tensor R and the metric tensor 1 satisfy

1

(
R

(
∂
∂xi

,
∂
∂x j

)
∂
∂xk

,
∂
∂xl

)
=

fil f jk − fik f jl

w4 . (4.1)

Corollary 4.2. The Allen’s matrix of a twice differentiable quasi-sum production function with more than two
variables is singular if its production hypersurface is a flat space.

Proof. Let f = F (h1 (x1) + ... + hn (xn)) be a twice differentiable quasi-sum production function, n ≥ 3. If
the production hypersurface of f is a flat space then, by Theorem 4.1 of [7], f is quasi-linear, namely at most
one of F, h1, ..., hn is a nonlinear function. This is a special case of statement (i) of Theorem 2.2. Therefore,
we obtain that the Allen’s matrix of f is singular.

Corollary 4.3. Let f = F (h1 (x1) + ... + hn (xn)) be a twice differentiable quasi-sum production function with
one of the h1, ..., hn linear function and F′′ , 0. Then the production hypersurface of f has vanishing Gauss-Kronocker
curvature if and only if the Allen’s matrix of f is singular.

Proof. Let us assume that the production hypersurface of f has vanishing Gauss-Kronocker curvature.
Then, by Theorem 5.1 of [7] , f is of the form:

f = F

c1x1 + c2x2 +

n∑
i=3

hi (xi)

 , (4.2)

where c1, c2 are nonzero constants and F, h3, ..., hn are strict monotone functions. It means from Theorem 2.2
that the Allen’s matrix of f is singular.

Conversely, under the hypothesis of the corollary, if the Allen’s matrix of f is singular, then, by Theorem
2.2, f is of the form (4.2) . Therefore, by Theorem 5.1 of [7] , we obtain that the production hypersurface of
f has vanishing Gauss-Kronocker curvature.

Theorem 4.4. Let f (x1, x2, x3) be a twice differentiable production function of 3 variables. If the production
hypersurface of f in E4 is a flat space then its Allen’s matrix M

(
f
)

is singular.

Proof. The Allen’s matrix for the production function f (x1, x2, x3) is given by

M
(

f
)

=


0 f1 f2 f3
f1 f11 f12 f13
f2 f21 f22 f23
f3 f31 f32 f33

 . (4.3)
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For the above matrix we find

det
(
M

(
f
))

= − f 2
1

(
f22 f33 − f 2

23

)
− f 2

2

(
f11 f33 − f 2

13

)
− f 2

3

(
f11 f22 − f 2

12

)
(4.4)

+2 f1 f2
(

f12 f33 − f13 f23
)
− 2 f1 f3

(
f12 f23 − f13 f22

)
+ 2 f2 f3

(
f11 f23 − f13 f12

)
.

On the other hand, if the production hypersurface of f is a flat space, then, by the statement (iii) of
Proposition 4.1, we have

fkn fml = fkl fmn, (4.5)

i.e. all brackets in the formula (4.4) are zero. From (4.4) and (4.5) we obtain det
(
M

(
f
))

= 0,which completes
the proof.

Remark 4.5. The Theorem 4.4 also holds in case the production hypersurface of f in E4 is a Ricci-flat
space or has vanishing sectional curvature function.
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